UDC 575 DOI: 10.2298/GENSR1502741S Original scientific paper

ALLELIC STATE AT THE MICROSATELLITE LOCUS XGWM261 MARKING THE DWARFING GENE RHT8 IN EGYPTIAN BREAD WHEAT (Triticum aestivum L.) GENOTYPES RELEASED FROM 1947 TO 2004

Khaled F. M. SALEM

Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt

Salem F.M. K. (2015): Allelic state at the microsatellite locus XGWM261 marking the dwarfing gene RHT8 in Egyptian bread wheat (Triticum aestivum L.) genotypes released from 1947 to 2004- Genetika, Vol 47, No. 2, 741-750.

Rht8 is widely used in dry environments such as Mediterranean regions where it increases plant adaptability. Variation at the Gatersleben wheat microsatellite Xgwm261 locus, whose 192-bp allele closely linked to the dwarfing gene Rht8, on chromosome 2D within 0.6 cM, was used to screen thirty Egyptian bread wheat genotypes released from (1947-2004) to assess the variation at this locus. There were three microsatellite allelic variants based on size. Screening of this wheat collection showed that the three alleles Xgwm261_165, Xgwm261_174 and Xgwm261_192 bp were the most frequent. The highest allele frequency was observed for a Xgwm261.165 bp fragment (65.52%) followed by a Xgwm261-174 bp fragment (24.14%). However, the allele frequency of a $Xgwm261_{-192}$ bp fragment among these wheat genotypes was 10.34%. The percentage distribution of dwarfing alleles for the microsatellite locus Xgwm261 in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively. PIC for Xgwm261 was 0.527. Genetic heritage of Egyptian genotypes at the microsatellite locus Xgwm261 is consequence of new parental components usage, carriers short plant and early maturity attributes and consequent selection progeny with these traits in breeding programs. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

Key words: Bread wheat (Triticum aestivum L.), Rht8, dwarfing gene, microsatellite marker

Corresponding author: K.Salem, Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, P. O. Box, 79, Egypt,*E-mail: salemcairo@yahoo.com*

INTRODUCTION

Wheat breeding has the opportunity of understanding and improving a crop that has profound strategic importance across countries. It is estimated that over the next decade, grain yield must increase by 15% to meet the global demand and consumption of wheat as a result of a growing human population (EDGERTON, 2009). One strategy to meet this challenge is to increase wheat productivity by optimizing plant architecture such as tillering and ear morphology. A decisive component of plant architecture is stature, mainly determined by stem elongation. Bread wheat is an annual crop with round, hollow and jointed stems. There are usually five elongated internodes in fully grown culms, with each internode progressively longer towards the ear. The last internode, the peduncle, is the longest. Reduced height (Rht8) semi-dwarfing gene is one of the few and most widely used in wheat breeding programs together with the Green Revolution genes, to shorten wheat culms and improve lodging resistance without penalizing grain yield (WORLAND and LAW, 1986). One of the most important agronomic characteristics of modern high-yielding bread wheat cultivars is the utilization of reduced height genes (Rht), which reduces plant height and simultaneously increases adaptability and grain yield potential (WORLAND et al., 2001; REYNOLDS and BORLAUG 2006; ALGHABARI et al., 2014). Short wheat genotypes are less susceptible to lodging and partition more assimilates to developing grain yield (WADDINGTON et al., 1986). In wheat, the large increases in yield achieved during the green revolution were associated with the introduction of the reduced height (Rht) genes into Mexican wheats by Norman Borlaug. Originally from the Japanese wheat genotype Norin 10, these genes became prevalent in CIMMYT wheats and are now found in the majority of modern wheat genotypes. Using a chromosome substitution line between Cappelle Desprez and the Strampelli wheat cultivar Mara, KORZUN et al. (1998) reported a linkage between the dwarfing gene Rht8 and a $X_{gwm}261_{.192}$ bp allele at the microsatellite locus Xgwm261 on chromosome 2D within 0.6 cM. Varieties carrying the Xgwm261.192 bp allele showed a height reduction of 7-8 cm without pleiotropic effects on other agronomic characters except for a slight increase in spikelet fertility (WORLAND et al., 1998). The use of dwarfing genes to reduce plant height and improve yield potential has been one of the major strategies in breeding program. Number of studies have surveyed wheat cultivars for the presence of Rht8 using the Gatersleben wheat microsatellite Xgwm261 locus as a diagnostic markers for $X_{gwm261.192}$ bp allele, either to determine its prevalence in worldwide wheat cultivars (CHEBOTAR et al. 2001; WORLAND et al. 2001; AHMAD and SORRELLS 2002; LIU et al. 2005; GANEVA et al. 2005; ZHELEVA et al., 2006, FAYT et al., 2007, SIP et al., 2010, DVOJKOVIĆ et al., 2010, WEIGT et al., 2013) or to ascertain the effect of Rht8 on other agronomic traits (REBETZKE and RICHARDS 2000; BAI et al. 2004). The objective of the present study were to i) analysis the presence of allelic variation in Xgwm261 microsatellite locus and ii) detect the Rht8 gene in Egyptian bread wheat genotypes released from (1947-2004).

MATERIALS AND METHODS

Plant material

A total of thirty Egyptian bread wheat genotypes (*Triticum aestivum* L.), released in production during the period from 1947 to 2004, were used for microsatellite screening. A complete list of Egyptian wheat used in this study are presented in Table 1. The seed stocks were obtained from Agriculture Research Center (ARC), Giza, Egypt; USDA Genebank, USA and Genbank Department, IPK, Gatersleben, Germany.

	peuigree.				
GenotypeYear1. Giza 1391947			Pedigree		
		1947	Hindi 90/ Kenya B256		
	2. Giza 144	1958	Rgent/2* Giza 139		
	3. Giza 157	1977	Giza 155//Pit 62 /LR 64/3/Tzpp/Knott		
	4. Sakha 8	1977	Indus/Norteno "s"		
	5. Sakha 61	1980	Inia/RL 4220//7C/Yr "s"		
	6. Sakha 69	1980	Inia/RL 4220//7C/Yr "s"		
	7. Giza 160	1982	Chenab70/Giza 155		
	8. Sakha 92	1987	Napo 63/Inia 66//Wern "s"		
	9. Giza 162	1987	Vcm//Cno67/7C/3/Kal/BbCM8399-D-4M-3Y-1M-1Y-1M-0Y		
	10. Giza 163	1987	T.aestivum/Bon//Cno/7C CM33009-F-15M-4Y-2M-1M-1M-1Y-0M		
	11. Giza 164	1987	Kvz/Buha "s"//Kal/Bb CM33027-F-15M-500y-0M		
	12. Gemmieza 1	1991	Maya 74/On//1160.147/3/Bb/Gall/4/Chat"s" CM58924-1GM-OGM		
	13. Giza 167	1995	Au/Up301//Gll/Sx/Pew"s"/4/Mai"s"/May"s"//Pew"s"CM67245-C-1M-2Y-1M-7Y-1M-0M		
	14. Sids 1	1996	HD 2172/Pavon"s"//1158.57/Maya 74 "s" SD46-4SD46-4Sd-2SD-1SD-0SD		
	15. Sids 2	1996	HD 2206/Hork"s"/3/Napo63/Inia66//Wern "s" SD635-4SD-1SD-0SD		
	16. Sids 3	1996	Sakha 69/Giza155 SD723-7SD-1SD-0SD		
	17. Sids 4	1994	Maya "s"/Mon "S"/CM H74.A592/3/Giza 157*2		
	18. Sids 5	1994	Maya "s"/Mon "S"/CM H74.A592/3/Giza 157*2 SD10001-7sd-4SD-2SD-0SD		
	19. Sids 6	1994	Maya "s"/Mon "S"/CM H74.A592/3/Sakha 8*2 SD10002-4SD-3SD-1SD-0SD		
	20. Sids 7	1994	Maya "s"/Mon "S"/CM H74.A592/3/Sakha 8*2 SD10002-8SD-1SD-1SD-0SD		
	21. Sids 8	1994	Maya "s"/Mon "S"/CM H74.A592/3/Sakha 8*2 SD10002-14SD-3SD-1SD-0SD		
	22. Sids 9	1994	Maya "s"/Mon "S"/4//CM H72.428/MRC//jip/3/CMH74A582/5/Giza157*2SD10003		
	23. Gemmieza 3	1997	Bb/7C*2//Y50/Kal*3//Sakha8/4/Prv/WW/5/3/Bg"s"//OnCGM.4024-1GM13 GM2GM-0GM		
	24. Gemmieza 5	1998	Vee"s"/SWM 6525 CGM.4017-1GM-6 GM-3 GM-0GM		
	25. Giza 168	1999	Mil/Buc//Seri		
	26. Sakha 93	1999	Sakha 92/TR 810328		
	27. Gemmiza 7	2000	CMH74 A. 630/5x//Seri 82/3/Agent CGM.4611-2GM-3GM-1GM-0GM		
	28. Gemmiza 9	2000	Ald"s"/Huac"/s"//CMH74A.630/5x CGM.4583-5GM-1GM-0GM		
	29. Sakha 94	2004	Opata/Rayon//Kauz		
	30. Gemmieza 10	2004	Maya 74 "s"/On//1160-147/3/Bb/4/Chat"s"/5/Ctow		

Table 1. Thirty Egyptian bread wheat genotypes used for genotyping with microsatellite marker, year of released and their pedigree.

DNA extraction

Ten seeds of each genotype were germinated and leaf tissue was harvested from 15 days old seedlings. Wheat genomic DNA was extracted from these genotypes according to PLASCHKE *et al.* (1995).

Polymerase Chain Reaction (PCR)

Polymerase chain reactions (PCR) were performed in a volume of 25 μ l described by RÖDER *et al.* (1998). The reaction mixture contained the following (1) amplification component, (2) *Xgwm261* primers pair and (3) genomic DNA (Table 2). Amplification for *Xgwm261* locus was

carried out according to the following program conditions, after initial denaturing for 3 min at 94 °C, 45 Cycles were performed at 94 °C for 1 minute, 55 °C for 1 minute and 72 °C for 2 minutes and a final extension step of 10 minutes at 72 °C.

	Reaction mix	Stock	Working	Volume per amplification (µl)
1	PCR buffer	10 X	1 X	2.5
	dNTPs	10 mM	0.2 mM	2.0
	<i>Taq</i> polymerase	1 U	0.1 µl	0.1 µl
	Demineraliz H ₂ O	-	14.1 µl	14.1 µl
2	Forward primer	250 nM	0.65 µl	0.65 µl
	Reverse primer	250 nM	0.65 µl	0.65 µl
3	Genomic DNA	> 50 ng µl	10 ng µl	5.00 µl
				Σ=25.00 μ1

Table 2. Concentration and volume of polymerase chain reaction (PCR) mix components

Microsatellite marker analysis

The Gatersleben wheat microsatellite marker Xgwm261 locus on chromosome 2DS as a diagnostic marker for *Rht8* was used for genotyping the Egyptian wheat genotypes according to RÖDER *et al.* (1998). The characteristics of microsatellite Xgwm261 primers pair shown in Table 3. Wheat microsatellite amplification was carried out as reported by RÖDER *et al.* (1998).

Table 3. Characteristics of microsatellite marker Xgwm261 primer pair

Marker	Chromosome	Primer sequence	Motif	Та
	location			(°C)
Xgwm261	2DS	Xgwm261-F 5'-CTCCCTGTACGCCTAAGGC-3'	(CT)21	55
		Xgwm261-R 5'-CTCGCGCTACTAGCCATTG-3'		

Ta (°C); primer annealing temperature

Statistical analysis

To measure the informativeness of the *Xgwm261* locus, the polymorphism information content (PIC) was calculated according to the formula of Nei (1973) using the equation: $PIC = 1 - \sum P_i^2$, where k is the total number of alleles detected for a locus of a marker and *Pi* the frequency=of the *i*th allele in the set of thirty genotypes investigated.

Polymerase chain reaction and fragment analysis were performed according to RÖDER *et al.* (1998). Denaturing gels with 6% polyacrylamide were prepared. The gels were run in 1X TBE buffer. Photographed gels were analyzed to calculate the allele size. Fragment detection for SSR marker was carried out as given in RÖDER *et al.* (1998), respectively.

RESULTS

Allelic identification and absolute fragment size determination

Wheat microsatellite locus *Xgwm261* was highly polymorphic among the thirty Egyptian bread wheat genotypes examined in the present study. The microsatellite primers amplified three

SSR fragments that varied in size from $Xgwm261_{.165}$ bp to $Xgwm261_{.192}$ bp (Table 4). All genotypes amplified a single fragment.

microsatellite locus Xgwm261								
	Genotype	Year	Fragment size bp for Xgwm261					
1.	Giza 139	1947		Xgwm261 ₋₁₇₄				
2.	Giza 144	1958		Xgwm261 ₋₁₇₄				
3.	Giza 157	1977	Xgwm261_165					
4.	Sakha 8	1977			Xgwm261_192			
5.	Sakha 61	1980	Xgwm261_165					
6.	Sakha 69	1980	Xgwm261 ₋₁₆₅					
7.	Giza 160	1982	Xgwm261 ₋₁₆₅					
8.	Sakha 92	1987	Xgwm261 ₋₁₆₅					
9.	Giza 162	1987	Xgwm261 ₋₁₆₅					
10.	Giza 163	1987	Xgwm261 ₋₁₆₅					
11.	Giza 164	1987	Xgwm261 ₋₁₆₅					
12.	Gemmieza 1	1991		Xgwm261 ₋₁₇₄				
13.	Giza 167	1995	Xgwm261 ₋₁₆₅					
14.	Sids 1	1996			Xgwm261 ₋₁₉₂			
15.	Sids 2	1996	Xgwm261 ₋₁₆₅					
16.	Sids 3	1996		Xgwm261 ₋₁₇₄				
17.	Sids 4	1994	Xgwm261 ₋₁₆₅					
18.	Sids 5	1994		Xgwm261 ₋₁₇₄				
19.	Sids 6	1994	Xgwm261 ₋₁₆₅					
20.	Sids 7	1994	Xgwm261 ₋₁₆₅					
21.	Sids 8	1994	Xgwm261 ₋₁₆₅					
22.	Sids 9	1994	Xgwm261 ₋₁₆₅					
23.	Gemmieza 3	1997	Xgwm261 ₋₁₆₅					
24.	Gemmieza 5	1998		Xgwm261 ₋₁₇₄				
25.	Giza 168	1999	Xgwm261 ₋₁₆₅					
26.	Sakha 93	1999			Xgwm261 ₋₁₉₂			
27.	Gemmiza 7	2000	Xgwm261 ₋₁₆₅					
28.	Gemmiza 9	2000		Xgwm261 ₋₁₇₄				
29.	Sakha 94	2004	Xgwm261 ₋₁₆₅					
30.	Gemmieza 10	2004			Xgwm261_192			

Table 4. Classification of Egyptian bread wheat genotypes for allelic variation at the Gatersleben wheat microsatellite locus Xgwm261

As the first step for allelic identification, the amplificons of Xgwm261 of each genotype were compared and the result revealed they can be divided into three groups with different allele size $Xgwm261_{.165}$, $Xgwm261_{.174}$ and $Xgwm261_{.192}$ bp, respectively (Table 4). There was clearly demonstrating three alleles from the longest to the shortest fragment. The 'stuttered' banding pattern, mainly due to the slippage of amplification, was the characteristic of SSR fragment after being separated by standard polyacrylamide gels and visualized by the automated laser fluorescence (ALF) DNA sequencer. In the process of size determination, the most intense upper

band was recorded as the SSR allele size (DECROOCQ *et al.*, 2003) and the same criteria were applied in both allele identification and absolute fragment size determination.

The distribution of Xgwm261 allelic variants in Egyptian genotypes

The screening results of the amplified microsatellite marker X_{gwm261} in thirty Egyptian bread wheat genotypes which released from 1947 to 2004 indicated that these genotypes had three different allelic variants at the X_{gwm261} locus (Table 4). Among these microsatellite alleles, the $X_{gwm261_{-165}}$ bp fragment occurred with greatest frequency 65.52% (19 genotypes), followed by $X_{gwm261_{-174}}$ bp 24.14% (7 genotypes) and $X_{gwm261_{-192}}$ bp fragments 10.34% (4 genotypes) (Figure 1), clearly demonstrated the distribution of the allelic variants.

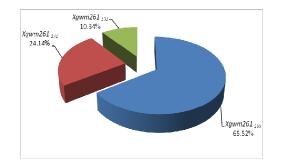


Figure (1): Percentage distribution of three alleles for the microsatellite locus *Xgwm261* in the Egyptian wheat genotypes.

The distribution of Xgwm261 allelic variants in Egyptian breeding program

A collection of thirty Egyptian bread wheat genotypes which released from 1947 to 2004 and representing four Egyptian wheat breeding programs performed at Sakha, Gemmiza, Giza and Sids was analyzed using wheat microsatellite locus Xgwm261 (Table 5). The number of wheat genotypes have Xgwm261-₁₆₅ bp was 7, 4, 2 and 6 for Giza, Sakha, Gemmiza and Sids, respectively. The number of wheat genotypes have Xgwm261-₁₇₄ bp was 2, 0, 3 and 2 for Giza, Sakha, Gemmiza and Sids, respectively. The number of wheat genotypes have Xgwm261-₁₉₂ bp was 0, 2, 1 and 1 for Giza, Sakha, Gemmiza and Sids, respectively.

The percentage distribution of dwarfing alleles for the microsatellite locus *Xgwm261* in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively (Figure 2).

Diversity index of Xgwm261

The wheat microsatellite marker *Xgwm261* showed an average PIC value of 0.527, which confirms that this wheat microsatellite marker is highly informative.

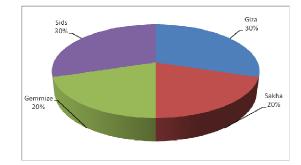


Figure (2): Percentage distribution of dwarfing alleles for the microsatellite locus *Xgwm261* in the Egyptian wheat breeding programs.

Table .5. Alleles distribution of Egyptian wheat genotypes in the wheat breeding programs

	Allele (bp)						
No	Breeding Program		Xgwm261 ₋₁₆₅	Xgwm261 ₋₁₇₄	Xgwm261 ₋₁₉₂	Total	
1	Giza	No	7	2		9	
		%	77.78	22.22	0		
2	Sakha	No	4		2	6	
		%	66.67	0	33.33		
3	Gemmize	No	2	3	1	6	
		%	33.33	50	16.67		
4	Sids	No	6	2	1	9	
		%	66.67	22.22	11.11		

DISCUSSION

The genetic diversity at the microsatellite locus Xgwm261 has been an important diagnostic tool for genotyping the *Rht8* gene (Table 1). Previous studies have shown three different alleles, $Xgwm261_{.165}$ bp, $Xgwm261_{.174}$ bp and $Xgwm261_{.192}$ bp, to be internationally widespread. The majority of the Egyptian genotypes in the present study had either of the first two of these alleles. Some of our PCR products yielded fragments that were sized a few base pairs larger than $Xgwm261_{.165}$ bp or $Xgwm261_{.174}$ bp, but in accordance with SCHMIDT *et al.* (2004), we did not consider them as distinct alleles, but a result of slippage or "stutter". The $Xgwm261_{.165}$ bp or $Xgwm261_{.174}$ bp alleles were the most common ones, 65.52 and 24.14% of the homozygotes, respectively. Our genotypes did not include any Japanese or Chinese accessions in crosses. It is therefore not surprising that we detect only four genotypes carry the $Xgwm261_{.192}$ bp allele. It has

been suggested that the $Xgwm261_{.174}$ bp allele is linked to the Ppd-D1b allele. In our genotype, we found both the $Xgwm261_{.174}$ bp and the $Xgwm261_{.165}$ bp alleles in Egyptian wheats. Although all the genotypes from the same breeding program in a few cases shared the same allele we could not distinguish any clear breeding program pattern in the distribution of the $Xgwm261_{.174}$ bp and the $Xgwm261_{.165}$ bp alleles. The limited number of genotypes restricts the possibility to recognize breeding program patterns, but the breeding program segregation of allele types (WORLAND, *et al.*, 1998, 2001) might actually have arisen later during modern plant improvement, often based on a few key cultivars. In the cultivation data for the Egyptian wheats flowering time (data not shown) was slightly earlier for genotypes with the $Xgwm261_{.174}$ bp than those with the $Xgwm261_{.165}$ bp allele but not significantly and did thus not show any clear support for linkage to Ppd-D1b. Molecular identification of genes involved in domestication and plant improvement has recently accelerated (DOEBLEY *et al.*, 2006 and BURGER *et al.*, 2008). By screening plant genetic diversity present and testing for selection the important alleles can be explored. In the case of dwarfing gene *Rht8* its role in 20th century wheat improvement is well known from extensive screens and documented crossings and pedigrees.

Geographical distribution of the microsatellite locus Xgwm261 alleles, their linkage relationship to a photoperiod response gene and the respective plant height of the cultivars were discussed by WORLAND et al. (1998). Their results indicated that the $X_{gwm}261_{-165}$ and the $X_{gwm261-_{174}}$ bp alleles are associated with a 8-10 cm height increase respectively, as compared to the $X_{gwm261-192}$ bp allele diagnostic for *Rht8*. The $X_{gwm261-192}$ bp allele was observed mostly in Italian, Russian and Yugoslavian wheat genotypes (WORLAND et al., 1998). In the present study, the Xgwm261.165, Xgwm261.174 and Xgwm261.192 bp alleles were the same as those reported by WORLAND et al. (2001), BAI et al. (2004), GANEVA et al. (2005) and ZHELEVA et al. (2006). The predominance of the $X_{gwm261,165}$ bp allele in the Egyptian bread wheat genotypes suggests that there may be selection for that allele in Egyptian wheat breeding program. These agree with Worland's results (WORLAND et al. 2001) for European wheat genotypes (UK, France and Germany) and South America (Argentina). Preference for taller plants may be caused by drier growing conditions, a shorter growing season or other environmental factors. Biotic factors, such as rain-splashed fungal spores, may reduce lower leaf area and contribute to an advantage for taller plants. The $X_{gwm261_{174}}$ bp allele that is associated more with shorter plant height than the $X_{gwm261_{165}}$ bp allele may be favored in the south part of delta in Egypt where there is often more soil moisture available and lodging is an important problem. All Xgwm261 alleles reported here were observed by WORLAND et al. (1998), but they also observed higher frequencies of the $X_{gwm261_{-165}}$ bp and the $X_{gwm261_{-174}}$ bp alleles in their studies. Among the thirty Egyptian wheat genotypes, the diagnostic marker allele for Rht8 (Xgwm261,192 bp) was found in only four genotypes (Sakha 8, Sids 1, Sakha 93 and Gemmiza 10). WORLAND et al. (1998) stated that CIMMYT wheat cultivars carry the $X_{gwm261,165}$ bp allele, while the $X_{gwm261,174}$ bp allele appears to be present in most of the Great Britain, French and German wheat genotypes. The presence of the higher frequency $X_{gwm261_{-174}}$ bp allele in the Egyptian wheat genotypes suggests it's introduction from CIMMYT wheat germplasm. Interestingly, the presence of the higher frequency $Xgwm261_{.165}$ bp allele in Egyptian wheat cultivars suggests that because of wheat breeders subsequently used CIMMYT wheat germplasm in their breeding programs.

The Gatersleben wheat microsatellite Xgwm261 locus showed a PIC value of 0.527, which confirms that this wheat microsatellite marker is highly informative. BOTSTEIN *et al.* (1980) reported that PIC value > 0.5 is considered as being highly informative marker. PIC obtained in

the present investigation was comparable with previous results on PIC of the Xgwm261 locus analysis.

Although *Rht8* only reduces plant height by around 8 cm, this new additional information will be practically useful to wheat breeders selecting plant height trait. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

Received March 23^h, 2015 Accepted June 29^h, 2015

REFERENCES

- AHMAD, M., ME SORRELLS (2002): Distribution of microsatellite alleles linked to *Rht8* dwarfing gene in wheat. Euphytica *123*:235-240
- ALGHABARI F., M. LUKAC, HE JONES, MJ GOODING (2014): Effect of Rht alleles on the tolerance of wheat grain set to high temperature and drought stress during booting and anthesis. J Agron Crop Sci 200:36-45
- BAI, G., MK DAS, BF,CARVER, X. XU, EG KRENZER (2004): Covariation for microsatellite marker alleles associated with *Rht8* and coleoptile length in winter wheat. Crop Sci *44*:1187-1194

BURGER, JC, MA CHAPMAN, JM BURKE (2008): Molecular insights into the evolution of crop plants. Am J of Bot 95:113-122 CHEBOTAR, SV, VN KORZUN, YM SIVOLAP (2001): Allele distribution at locus *WMS261* marking the dwarfing gene *Rht8* in

- common wheat cultivars of southern Ukraine. Rus J Genet 37:894-898 DECROOCQ, V., MG FAVE, L. HAGEN, L. BORDENAVE, S. DECROOCQ (2003): Development and transferability of apricot and
- grape EST microsatellite markers across taxa. Theor Appl Genet 106:912-922
- DOEBLEY, JF, BS GAUT, BD SMITH (2006): The molecular genetics of crop domestication. Cell 127:1309-1321
- DVOJKOVIĆ, K., Z. SATOVIĆ, G. DREZNER, DJ SOMERS, A. LALIĆ, D. NOVOSELOVIĆ, D. HORVAT, S. MARIĆ, H. ŠARČERIĆ (2010) :Allelic viability of Croatian wheat cultivars at the microsatellite locus *Xgwm261*. Poljoprivreda *16*: 32-37
- EDGERTON, MD (2009): Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology 149: 7-13
- FAYT, VI, SV CHEBOTAR, NV, MOKANY MV PILIPENKO (2007): Effects of the alleles of the *Rht8* gene on the agricultural traits of bread winter wheat under conditions of the Steppe region of the southern Ukraine. *Cytol Genet* 41:91-97
- GANEVA, G., V. KORZUN, S. LANDJEVA, N. TSENOV, M. ATANASTOVA (2005): Identification, distribution and effects of agronomic traits of the semi-dwarfing *Rht* alleles in Bulgarian common wheat cultivars. Euphytica 145:305-315
- KORZUN, V., MS,RÖDER MW GANAL, AJ WORLAND, CN LAW (1998): Genetic analysis of the dwarfing gene (*Rht*) in wheat. Part I. Molecular mapping of *Rht8* on the short arm of chromosome 2D of bread wheat (*Triticum aestivum* L.). Theor Appl Genet 96:1104-1109
- LIU, Y., D. LIU, H. ZHANG, J. WANG, J. SUN, X. GUO, A. ZHANG (2005): Allelic variation, sequence determination and microsatellite screening at the XGWM261 locus in Chinese hexaploid wheat (*Triticum aestivum*) varieties. Euphytica 145:103-112
- PLASCHKE, J., MW GANAL, MS RÖDER (1995): Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001-1007
- REBETZKE, GJ, RA RICHARDS (2000): Giberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agr Res 51:235-245
- REYNOLDS, MP, NE BORLAUG (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144:3-17
- RÖDER, MS, V. KORZUN, K. WENDEHAKE, J., PLASCHKE MH TIXIER, P. LEROY, MW GANAL (1998): A microsatellite map of wheat. Genetics 149:2007-2023

- SCHMIDT, AL, KR GALE, MH ELLIS, PM GIFFARD (2004) Sequence variation at a microsatellite locus (*XGWM261*) in hexaploid wheat (*Triticum aestivum*) varieties. Euphytica 135:239-246
- ŠIP, V., J. CHRPOVA, A. ŽOFAJOVA, K. PANKOVA, M. UŽIK, J. SNAPE (2010): Effects of specific *Rht* and *Ppd* allels on agronomic traids in winter wheat cultivars grown in middle Europe. Euphytica 172:221-233
- WADDINGTON, SR, JK RANSOM, M. OSMANZAI, DA SAUNDRES (1986) Improvement in the yield potential of bread wheat adapted to northwest Mexico. Crop Sci 26:698-703
- WEIGT, D., A .TOMKOWIAK, D. KURASIAK-POPOWSKA, J. NAWRACAŁA (2013) Identification of the semi-dwarfing gene with the use of marker WMS 261 in wheat genotypes of different origin. Acta Sci Pol Agricultura 12: 95-103
- WORLAND, AJ, CN LAW (1986): Genetic analysis of chromosome 2D of wheat. 1. The location of genes affecting height, day length insensitivity, hybrid dwarfism and yellow-rust resistance. Z Pflanzenzuecht 96:331-345
- WORLAND, AJ, EJ SAYERS, V. KORZUN (2001): Allelic variation at the dwarfing gene *Rht8* locus and its significance in international breeding programmes. Euphytica *119*:155-159
- WORLAND, AJ, V. KORZUN, MS RÖDER, MW GANAL, CN LAW (1998): Genetic analysis of the dwarfing gene *Rht8* in wheat. Part II. The distribution and adaptive significance of allelic variants at the *Rht8* locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110-1120
- ZHELEVA, D, E. TODOROVSKA, JM. JACQUEMIN, A. ATANASSOV, N. CHRISTOV, I. PANAYOTOV, N. TSENOV (2006): Allele distribution at microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in hexaploid wheat from Bulgarian and Belgian gene bank collections and its application in breeding programs. Biotechnol. & Biotechnol. 20: 45-56.

ALELNI STATUS MIKROSATELITSKOG MARKERA Xgwm261 GENA Rht8 KOD GENOTIPOVA EGIPATSKE HLEBNE PŠENICE (Triticum aestivum L.) PRIZNATIH UPERIODU 1947 - 2014

Khaled F M SALEM

Odelenje za biljnu biotehnologiju, Institut za genetičko inžejerstvo i istraživanja u biotehnologiji (GEBRI) Univerzitet Sadat City, Egipat

Izvod

Rht8 se koristi u klimatskim uslovima Mediterana u kom povećava adaptibilnost biljaka. Microsatelit, Xgwm261 locus kod pšenice, čiji je alel veličine 192-bp allele blisko ukopčan sa genom Rht8, na hromozomu 2D unutar 0,6cM i kontroliše smanjenje visine biljke, je upotrebljen za skrining 30 genotipova egipatske hlebe pšenice. Clj je bio procena variranja tog lokusa. Utvrđeno je da u kolekciji pšenice postoje tri najfrekventnija alela: $Xgwm261_{.165}$ (65.52%) $Xgwm261_{.174}$ (24,14%) i $Xgwm261_{.192}$ (10,34%). Genetičko nasleđivanje egipatskih genotipova u lokusu mikrosatelita Xgwm261 je posledica nove roditeljske komponente koja nosi osobinu niske biljke i ranostasnost i daje potomstvo sa ovim osobinama, korisnim za programe oplemenjivanja.

Primljeno 23. III. 2015. Odobreno 29Vi. 2015.