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MicroRNAs (miRNAs) are small endogenously expressed single-
stranded RNAs that regulate gene expression post transcriptionally and shape 
diverse cellular pathways. miRNAs regulate a wide range of biological 
processes through the recognition of complementary sequences between 
miRNAs and their target genes. The present investigation aimed at determining 
in-silico the genetic variability of miRNA genes in some livestock and non-
livestock species. Effects of single nucleotide polymorphisms (SNPs) in genes’ 
3'UTR on target gain/loss of human miRNAs were also explored. A total of 
twenty four mature miRNA sequences and genomic coordinates in three 
livestock [chicken (5), pig (1) and cattle (9)] and two non-livestock (human (6) 
and mouse (3)] species were retrieved from the miRBase 15 release. 
Computational scanning of polymorphisms in the miRNAs revealed 33 and 20 
polymorphic sites in livestock and non-livestock species, respectively. Of this, 
7 (chicken), 11 (cattle) and 2 (mouse) were located within the seed region. The 
de novo computational prediction revealed that SNPs rs1042725 (C/U) and 
rs1044129 (A/G) in genes’ 3'UTR of human miRNAs positively influenced the 
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target site thereby resulting in target gain.  However, the effects of SNPs 
rs56109847 (A/G), rs28927680, rs12720208 (G/A) and rs5186 (A/C) were 
negative. The evolutionary tree showed that the relationship between miRNA 
consensus sequences of livestock (pig, chicken and cattle) was closer 
compared to non-livestock species (mouse and human), which could be 
implicated in morphological complexity among vertebrates. Although the 
function of miRNA is only beginning to be understood, future in-silico 
research evaluating the functional effect of miRNA in gene translation and 
subsequent biological pathways especially in livestock is of paramount 
importance; and this should be complemented with hypothesis-driven 
experimental studies to evaluate the phenotypic effect of identified miRNA 
genetic polymorphisms in animals. 

Key words: miRNAs, polymorphisms, in-silico, functional effect, 
animals. 

 
 

INTRODUCTION 
The first microRNA was discovered in Caenorhabditis elegans in 1993, and since then, 

thousands of microRNAs (miRNAs) have been identified from almost all eukaryotic organisms 
examined (MENG et al., 2013). They are a growing class of small non-coding RNA molecules, 
18-25 nucleotides in length, and important post-transcriptional regulators of target mRNAs. 
Initially, miRNAs are processed from transcript and form hairpin-like loops (WINTER et al., 
2009). By binding (mature miRNAs) to the different target gene regions, that is, 3′-untranslated 
region (3′-UTR), 5′-UTR, promoter or coding sequences, they repress or activate translation 
(KUNEJ et al., 2012, ZHANG et al., 2013). Mutation, dysfunction, and/or dysregulation of 
miRNAs may give rise to diseases such as coronary artery disease, cancer, diabetes, AIDS, 
hepatitis, and obesity in humans. In animals, miRNAs are important genetic regulators. A small 
number of miRNAs are associated with known physiological roles such as muscle and organ 
development, the immune response, stress response, metabolism and longevity (MCDANELD, 
2009; LIU et al., 2010). Animal miRNAs appear to have expanded in conjunction with an 
escalation in complexity during early bilaterian evolution. Their small size and high-degree of 
similarity makes them challenging for phylogenetic approaches (GUERRA-ASSUNÇÃO and 
ENRIGHT, 2012).   

Previous studies have shown that miRNA gene variability can interfere with its 
function, resulting in phenotypic variation. Polymorphisms within miRNA genes present a 
source of novel biomarkers for phenotypic traits in animal breeding (SKOK et al., 2013). Each 
miRNA is potentially capable of regulating hundreds (or even thousands) of mRNA targets 
simultaneously. It is therefore important that their regulation be tightly controlled. Moreover, it 
has been postulated that intronic miRNAs may regulate the same biological pathway as their host 
genes. Several examples of this have been found, namely in the regulation of Myosin expression 
(VAN ROOIJ et al., 2009) and cholesterol biosynthesis (RAYNER et al., 2011). MicroRNAs’ effects 
on target gene expression can be roughly classified into two types: “tuning” and “buffering”. 
Tuning relates to effects on the target gene expression level, whereas buffering relates to 
repression of expressional variation (WU et al., 2009). It is speculated that the dual functions of 
miRNAs could represent two stages in miRNA evolution, miRNA initially acting by reducing 
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variance in gene expression, and only gradually taking on tuning of the expressional level over 
time (WU et al., 2009). Apparently, miRNAs of varying age are not “equal”, as older miRNAs 
are commonly more highly and broadly expressed than younger miRNAs (LU et al., 2008), and 
knockout of an older miRNA results in a more severe phenotype than knockout of a younger 
miRNA (VAN ROOIJ et al., 2007). 

The present study therefore, aimed at determining in-silico the genetic variability of 
miRNA genes in some livestock and non-livestock species. It also examined the effects of single 
nucleotide polymorphisms (SNPs) in genes’ 3'UTR on target gain/loss of human miRNAs. 
 

 
MATERIALS AND METHODS 

A total of twenty four mature miRNA sequences and genomic coordinates in three 
livestock [chicken (5), pig (1) and cattle (9)] and two non-livestock (human (6) and mouse (3)] 
species were retrieved from the miRBase 15 release (http://www.mirbase.org/) (GRIFFITHS-JONES 
et al., 2006). Annotation of genomic position for miRNAs in these five species was also 
extracted from miRbase. The miRBase database is a searchable database of published miRNA 
sequences and annotation. Each entry in the miRBase Sequence database represents a predicted 
hairpin portion of a miRNA transcript (termed mir in the database), with information on the 
location and sequence of the mature miRNA sequence (termed miR) (KOZOMARA and GRIFFITHS-
JONES, 2011). 

The upgraded bioinformatics tool MIRNA SNIPER 3.0 (SKOK et al., 2013) was used for 
assembling a list of some known miRNA SNPs in all the five species investigated. MIRNA 
SNIPER was developed for the detection of polymorphisms residing within miRNA genes in 
vertebrates. It accepts a list of miRNA genes and returns a table of variations within different 
regions of miRNA genes: pre-miRNA, mature, and seed region (ZORC et al., 2012). The mature 
sequences are designated as ‘‘miR’’ and the precursor hairpins as ‘‘mir’’ (GRIFFITHS-JONES et 

al., 2006). The tool retrieves data from multiple sources such as miRNA gene sequences, 
genomic coordinates, and nomenclature from miRBase, release 18 (http://www.mirbase.org/) 
(KOZOMARA and GRIFFITHS-JONES, 2011); locations of miRNA seed regions from TargetScan, 
release 5.2 (http://www.targetscan.org/) (LEWIS et al., 2005), and  locations of genetic 
polymorphisms from Ensembl Variation database, release 64 (http://www.ensembl.org/) 
(MCLAREN et al., 2010). 

The likelihood of a particular SNP to affect miRNA target sites was estimated using 
web-based application, miRNASNP 2.0, which predicts the functional impact of a SNP on 
putative microRNA targets. This application interrogates the 3'-untranslated region and predicts 
if a SNP within the target site will disrupt/eliminate or enhance/create a microRNA binding site 
(GONG et al., 2009). This was specifically done for human miRNA sequences. 
 Multiple sequence alignments were constructed on the basis of the pairwise alignments. 
Phylogenetic analyses of the mature miRNA sequences of the species were analyzed using the 
MEGA package (TAMURA et al., 2011). The evolutionary history was inferred using the 
Maximum Parsimony (MP) method. The MP tree was obtained using the Close-Neighbor-
Interchange algorithm (NEI and KUMAR, 2000). Similarly, consensus miRNA sequences were 
used to establish evolutionary relationships among the taxa as adopted in YAKUBU et al. (2013). 
The evolutionary history was inferred using the Minimum Evolution method (RZHETSKY and NEI, 
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1992). The evolutionary distances were computed using the p-distance method. The Neighbor-
joining algorithm was used to generate the initial tree. 

 
RESULTS AND DISCUSSION 

SNPs in Pre-mature, mature and seed regions of cattle, chicken, pig, human and mouse 
are shown in Tables 1 and 2. 33 and 20 polymorphic sites in livestock and non-livestock species, 
respectively were observed; out of which, 7 (chicken), 11 (cattle) and 2 (mouse) were located 
within the seed region. A SNP occurring in a pre-miRNA or in the seed region of a miRNA can 
alter the secondary structure and therefore affect processing of a miRNA to maturity, long 
ranging phenotypic effects (LIU et al., 2009). Large-scale transcriptomic and proteomic studies 
have revealed that the primary determinant for miR binding is perfect consecutive Watson-Crick 
base-pairing between the target RNA and the miR at positions 2–7 or 2–8 of the 5' end of the 
mature miR, often denoted as the “seed” region (The key binding location for translational 
suppression) (BRENNECKE, 2005; SUN et al., 2009). This signature has been reaffirmed with 
crystallographic studies of ribonucleoprotein Ago-miR complexes showing that the seed region 
is organized in a helical conformation that exposes it to base-pair with the target RNA. As 
expected, miR SNPs in the seed region would ultimately result in the regulation of a completely 
different set of mRNA targets (DOXAKIS, 2013).  

Effects of SNPs in genes 3'UTR on target gain/loss of human miRNAs are shown in 
Table 3. SNPs rs1042725 (C/U) and rs1044129 (A/G) in genes’ 3'UTR of human miRNAs, 
positively influenced the target site, thereby resulting in target gain.  However, the effects of 
SNPs rs56109847 (A/G), rs28927680, rs12720208 (G/A) and rs5186 (A/C) were negative. The 
activity of miRNAs can be affected by single nucleotide polymorphisms (SNPs) that occur either 
in the miRNA or in the miRNA target site on the mRNA (MISHRA et al., 2007). These miRSNPs 
can alter miRNA gene processing and/or the normal mRNA-miRNA interactions. Thus, these 
SNPs can create new miRNA target sites or destroy old target sites. Hence, these miRSNPs may 
also contribute to the interindividual variability in the enzyme expression and activity 
(RAMAMOORTHY et al., 2012). Two recent reports indicate that allelic variation in miRNA target 
sites have contributed to phenotypic differences in livestock. There is substantial interest in 
methods designed to predict the miRNA targets and effect of single nucleotide polymorphisms 
(SNPs) on microRNA binding, given the impact of miRNA on posttranscriptional regulation and 
its potential relation to complex diseases (ZHU et al., 2012). A G to A transition in the 3'UTR of 
myostatin (GDF8) creates an illegitimate target site for the myogenic miRNAs miR-1 and miR-
206 in Texel sheep (CLOP et al., 2006; LIU et al., 2009). The recognition of the myostatin A allele 
by miR-1 and miR-206 has been shown to reduce the expression of myostatin, which contributes 
to the muscle hypertrophy found in these animals. The polled (absence of horns) trait has been 
mapped to the proximal end of chromosome 1 (GEORGES et al., 1993). Computational scanning 
of polymorphisms in this chromosomal region in Holsteins identified a polymorphism in the 
3'UTR of synaptojanin (SYNJ1), which could disrupt the target sites for miRNAs let-7 and miR-
98, and it was suggested that this polymorphic miRNA target site may contribute to the polled 
trait in cattle (CARGILL et al., 2008). Therefore, the present SNPs in the 3'UTR of human 
microRNA may be exploited in future experimental studies. 
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Table 1. Genetic variability in cattle, chicken and pig showing SNPs in Pre-mature, mature and seed 

regions 

 

mature miRNA  Sequence SNP ID Region/variation 

bta-miR-29e UAGCAUCAUUUGAAAUCAGUGUUU rs41825418 Seed, SNP (U>C) 

bta-miR-2313-5p AGUGCAGCUGAGGACCAAGGCA rs41761413 Pre-mature, SNP (C>U) 

 CCAGUUCCACGCUGCAUGCC rs41761413 Seed, SNP (C>U) 

bta-miR-2450c CACGUCAGUAGAGGCGCGUGUG rs42658514 Seed, SNP (G>A) 

bta-miR-2489 AAAUGACAGGGGACAUGAGUUU rs110544069 Seed, SNP (C>U) 

  rs109834057 Seed, SNP (A>G) 

  rs136326300 Pre-mature, SNP (C>U) 

bta-miR-1260b AUCCCACCACUGCCACCA rs133713823 Mature, SNP (U>G) 

  rs134960452 Seed, SNP (U>G) 

  rs136690815 Pre-mature, SNP (A>G) 

  rs134279894 Pre-mature, SNP (U>G) 

bta-miR-1291 UGGCCCUGACUGAAGACCUGCAGU rs110817643 Seed, SNP (C>U) 

bta-miR-133a UUUGGUCCCCUUCAACCAGCUG rs137070651 Seed, SNP (U>C) 

bta-miR-2318 GUGUAUGAUGAAUUAUCUGA rs134638324 Seed, SNP (A>C) 

bta-miR-2369 GUAGGUUGUGGGUUUUUGUUU rs135405976 Mature, SNP (C>U) 

  rs136780194 Seed, SNP (A>G) 

  rs134753593 Seed, SNP (A>C) 

  rs135082893 Pre-mature, SNP (G>A) 

gga-miR-1568 GACUCAUAGAUCUGAAGGCAG rs14511526 Mature, SNP (U>C) 

  rs14511527 Seed, SNP (A>G) 

gga-miR-1614 GGCAUGGCAGACUCACCCUGC rs15172520 Pre-mature, SNP (G>A) 

gga-miR-1614* CAGGGAGGAACUGCCAGCAGA rs15172520 Seed, SNP (G>A) 

gga-miR-1644 UCUGUUGUGCAGGGCUGUGCU rs14076349 Seed, SNP (U>C) 

gga-miR-1648 CGGCUCGGCUCGGCUCCGCUC rs14281065 Pre-mature, SNP (U>-) 

  rs14281066 Pre-mature, SNP (G>A) 

  rs14281065 Seed, SNP (U>C) 

  rs14281066 Mature, SNP (G>A) 

gga-miR-1658 UAUACCACCCCCAGGAGUUCUGC rs16681031 Pre-mature, SNP (C>G) 

  rs16681032 Pre-mature, SNP (C>U) 

  rs16681033 Seed, SNP (->G) 

gga-miR-1658* GAGCUGUGGGUUGGUGUUGAUGG rs16681031 Seed, SNP (C>G) 

  rs16681032 Seed, SNP (C>U) 

  rs16681033 Pre-mature, SNP (->G) 

ssc-miR-4335 GUGCCCAGCGCUGCAGGGCA - - 

bta = cattle, gga = chicken, ssc = pig 
- = no information 
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Table 2. Genetic variability in human and mouse showing SNPs in Pre-mature, mature and seed regions 

 
Mature miRNA  Sequence SNP ID Region/variation 

hsa-miR-96-5p UUUGGCACUAGCACAUUUUUGCU rs73159662 Pre-mature, SNP (G>A) 

  rs41274239 Pre-mature, SNP (A>G) 

hsa-miR-96-3p AAUCAUGUGCAGUGCCAAUAUG rs73159662 Pre-mature, SNP (G>A) 

  rs41274239 Pre-mature, SNP (A>G) 

hsa-miR-184 UGGACGGAGAACUGAUAAGGGU rs145763978 Pre-mature, SNP (C>G) 

  rs41280052 Pre-mature, SNP (G>U) 

hsa-miR-299-5p UGGUUUACCGUCCCACAUACAU rs41286566 Mature, SNP (C>U) 

hsa-miR-299-3p UAUGUGGGAUGGUAAACCGCUU rs41286566 Pre-mature, SNP (C>U) 

hsa-miR-383 AGAUCAGAAGGUGAUUGUGGCU rs182042712 Pre-mature, SNP (U>G) 

  rs184836993 Mature, SNP (A>G) 

  rs112302475 Mature, SNP (U>G) 

hsa-miR-34c-5p AGGCAGUGUAGUUAGCUGAUUGC - - 

hsa-miR-34c-3p AAUCACUAACCACACGGCCAGG - - 

hsa-miR-487a AAUCAUACAGGGACAUCCAGUU rs143972054 Pre-mature, SNP (G>A) 

    

mmu-miR-96-5p UUUGGCACUAGCACAUUUUUGCU rs29654812 Pre-mature, SNP (C>G) 

mmu-miR-96-3p CAAUCAUGUGUAGUGCCAAUAU rs29654812 Pre-mature, SNP (C>G) 

mmu-miR-654-5p UGGUAAGCUGCAGAACAUGUGU rs38443670 Pre-mature, SNP (G>A) 

  rs36943496 Seed, SNP (A>G) 

mmu-miR-654-3p UAUGUCUGCUGACCAUCACCUU rs38443670 Pre-mature, SNP (G>A) 

  rs36943496 Pre-mature, SNP (A>G) 

mmu-miR-717 CUCAGACAGAGAUACCUUCUCU rs30372501 Seed, SNP (U>C) 

  rs30373504 Pre-mature, SNP (A>G) 

hsa = human, mmu = mouse 
= no information 

 

 
The phylogenetic tree depicting evolutionary relationships among the miRNAs of five 

mammalian species is shown in Figure 1.One of the features observed for mature miRNAs in the 
present study was their high degree of similarity across species. This is consistent with the 
findings of PASQUINELLI et al. (2000) that many miRNA families have identical mature 
sequences across a wide range of species. In a related study, GUERRA-ASSUNÇÃO and ENRIGHT 

(2012) reported that miRNAs have atypical patterns of synteny with preferences for longer 
clustered regions, which do not appear to be affected by genome compaction. However, there 
was little specie-specific close proximity [as observed for cattle (bta-miR-2318, bta-miR-29e, 
bta-miR-133a, bta-miR-1260b, bta-miR-2318, 2313-5p and bta-miR-1291) and chickens (gga-
miR-1648-5p and gga-miR-1614-3p in this study] which appeared to be less highly conserved 
and hence more amenable to phylogenetic approaches. According to GUERRA-ASSUNÇÃO and 
ENRIGHT (2012), while many miRNAs are present in multiple species and are highly conserved, 
there are a growing number of miRNAs restricted to specific lineages. However, the 
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evolutionary pattern changed when consensus miRNA sequence of each species was used to 
derive the phylogenetic tree (Fig. 2). The relationship between miRNA sequences of livestock 
(pig, chicken and cattle) was closer compared to non-livestock species (mouse and human).  

 
 

Table 3. Effect of SNPs in genes’ 3'UTR on target gain/loss of human miRNAs 

 
SNP in gene 3'UTR miRNA SNP location Energy change 

(Kcal/mol) 

Effect by SNP on 
3'UTR 

HTR3E (NM_001256614); hsa-miR-510 chr3:183824557 Wild: -28.00 Loss 

 rs56109847 (A/G)   SNP: 0.00  

HTR3E (NM_198313); hsa-miR-3664-3p chr3: 183824557 Wild: 0.00 Loss 

 rs56109847 (A/G)   SNP: -16.60  

BUD13 (NM_032725); hsa-miR-548a-3p chr11:116619073 Wild: -24.60 Loss 

Rs28927680 (C/G)   SNP: 0.00  

BUD13 (NM_032725); hsa-miR-1323 chr11:116619073 Wild: -20.80 Loss 

Rs28927680 (C/G)   SNP: 0.00  

BUD13 (NM_032725); hsa-miR-548o-3p chr11:116619073 Wild: -18.90 Loss 

Rs28927680 (C/G)   SNP: 0.00  

BUD13 (NM_032725); hsa-miR-4720-5p chr11:116619073 Wild: -18.10 Loss 

Rs28927680 (C/G)   SNP: 0.00  

BUD13 (NM_032725); hsa-miR-4799-3p chr11:116619073 Wild: -20.80 Loss 

Rs28927680 (C/G)   SNP: 0.00  

HMGA2  (NM_003483); hsa-miR-4742-3p chr12:66358347 Wild: 0.00 Gain 

rs1042725 (C/U)   SNP: -9.30  

HMGA2  (NM_003483); hsa-miR-4760-3p chr12:66358347 Wild: 0.00 Gain 

rs1042725 (C/U)   SNP: -13.40  

FGF20 (NM_019851); hsa-miR-433 chr12:16850399 Wild: -14.50 Loss 

rs12720208 (G/A)   SNP: -12.30  

AGTR1 (NM_000685); hsa-miR-155-5p chr12:148459988 Wild: -17.20 Loss 

rs5186 (A/C)   SNP: 0.00  

RYR3 (NM_001036); hsa-miR-4742-3p chr15:34158266 Wild: 0.00 Gain 

Rs1044129 (A/G)   SNP: -16.60  
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Figure 1. Phylogenetic tree showing evolutionary relationship in miRNAs of five mammalian species. 
Branches corresponding to partitions reproduced in less than 50% trees were collapsed. The 
consistency index is (0.223684), the retention index is (0.394872), and the composite index is 
0.088327 (0.088327) for all sites and parsimony-informative sites (in parentheses. 

 

Analysis of miRNAs phylogenetics could be a useful starting point to explore the molecular 
basis of morphological complexity (HEIMBERG et al., 2008). According to LEE et al. (2007), the 
diversity of the microRNA repertoire, the complexity of their expression patterns, and the 
diversity of the miRNA targets are correlated with the animal’s morphological complexity. 
Mechanistically, this is more than plausible since the miRNA pathway can influence large gene 
networks in a coordinated manner and miRNAs are known to be involved in the regulation of 
nearly all cellular processes (TANZER et al., 2008). The evolution of microRNAs is characterized 
not only by the continuing innovation of novel families but also by the diversification of 
established families spawning additional paralogous family member. Animal miRNAs are often 
organized in genomic clusters, usually indicating a single polycistronic primary precursor 
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transcript, which may carry members of several distinct microRNA families (TANZER et al., 
2008). Like protein-coding gene families (YAKUBU et al., 2012; AJAYI et al., 2013) the miRNA 
families evolved through gene duplications and gene loss; and there is an increasing amount of 
evidence that whole genome duplication events actually occurred twice during the emergence of 
vertebrates (DEHAL and BOORE, 2005; LI et al., 2008), being a major source of morphological 
complexity among vertebrates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Evolutionary tree derived from consensus miRNA sequences of some vertebrates. The 

evolutionary history was inferred using the Minimum Evolution method. The optimal tree with 
the sum of branch length = 1.86250000 is shown. 

 
 

CONCLUSION 
The potential of miRNAs seems not to have been well exploited in vertebrates especially in 
Nigeria, sub-saharan Africa as there is dearth of information on PCR experimentally validated 
miRNA studies. Therefore, efforts should be geared towards reasonable use of the validated 
miRNA SNPS to enhance our understanding of the role of miRNA in regulating key cellular and 
physiological pathways in both livestock and non-livestock species. 
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Izvod 

Mikro RNKs (miRNKs) regulišu veliki broj bioloških procesa preko prepoznavanja 
komplementarnih sekvenci između miRNKs i njihovog ciljnog gena. Ispitivanja su obuhvatila in 

- silico genetičke varijabilnosti miRNK kod domaćih i drugih životinjskih vrsta. Vršena su 
ispitivanja efekta polimorfizma pojedinačnih nukleotida (SNPs) u genima 3� UTR na cilj 
povećanje/gubitak humanih miRNKs. Kompjutersko skaniranje polimorfizma u mRNKs je 
potvrdilo 33 polimorfna mesta kod domaćih životinja i 20 kod ostalih animalnih vrsta. Of this, 7 
(chicken), 11 (cattle) and 2 (mouse) were located within the seed region.  Evoluciono stablo 
pokazuje da je odnos između miRNKs sekvenci kod domaćih životinja bliži u poređenju sa 
mišem i čovekom što može da se uključi u morfološku kompleksnost kičmenjaka. Iako je 
razumevanje funkcije miRNKs na početku buduća in silico istraživanja i vrednovanje 
funkcionalnog efekta miRNKs u translaciji i procesima posle translacije, posebno kod domaćih 
životinja su od velikog značaja.  
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