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The objective of this review article is to explain the factors responsible 

for damaged mitochondria and its association with Alzheimer’s disease. 

Alzheimer’s disease (AD) is fairly produced by dysfunctional mitochondria 

that are alternatively caused by excessive reactive oxygen species and 

mitochondrial dynamic imbalance. In the pathogenesis of AD, there is 

important role of many factors including amyloid-beta peptide (A�), tau-

proteins, and mutations in presenilin-1. Additionally, mitochondrial-targeted 

antioxidants have also been explained because of their significance to 

mitochondrial alterations in AD. Moreover, alteration in mitochondrial 

dynamics is responsible for the generation of segregated, damaged 

mitochondria that are, later on, destroyed through mitochondrial autophagy in 

AD. Finally, various novel models used for studying Alzheimer’s disease, 

have been discussed.  
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INTRODUCTION 

Mitochondria, the important cytoplasmic organelles, have capability of modifying their 

shape and size swiftly in accordance with their needs. Mitochondria are highly dynamic 

organelles, which are continuously recycled (CHANG and REYNOLDS, 2006). In mammalians, the 

life span of mitochondria is different in different tissues, e.g. half-life of neuronal mitochondria 

is approximately 30 days (REDDY, 2008). This organelle consists of two lipid membranes i.e. the 

outer and inner mitochondrial membranes, separated by a matrix that houses tricarboxylic acid 

(TCA) and beta-oxidation. In contrast to highly porous outer membrane, the inner mitochondrial 
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membrane is an efficient barrier where electron transport chain (ETC) takes place (Figure 1) 

(REDDY, 2007).  

The functions of mitochondria include the regulation of intracellular calcium, arresting 

the free-radical, and ATP synthesis through OXPHOS within the inner mitochondrial membrane 

(WALLACE, 1999). As a byproduct of OXPHOS, free radicals are produced that are scavenged by 

antioxidant enzymes naturally present in adequate amounts in the mitochondria resulting in the 

protection of cells against oxidant-induced toxicities. However, imbalance between oxidants and 

antioxidant enzymes in certain cells (as in pyramidal neurons in cortex and hippocampus in 

Alzheimer’s disease (AD) brain) creates oxidative stress (REDDY, 2012a). The neuronal death 

due to senile plaques and neurofibrillary tangles (Table 1) in brain is termed as AD (REDDY et 

al., 2012a; ALZHEIMER et al., 1907). 

AD is medically recognized as a silent neurodegenerative disease since it remains 

asymptomatic until its diagnosis (SAVVA et al., 2009). There are evidences that the oxidative 

stress in the central and peripheral nervous system (CECCHI et al., 2002; MOREIRA et al., 2007a) 

is responsible for mitochondrial dysfunction (MD) (BONDA et al., 2010a). It results in the 

development of various neurodegenerative disorders (AVILA, 2010), including AD (ZHU et al., 

2013; MURTAZA et al., 2014) that can be categorized into two types: familial Alzheimer’s disease 

(FAD) and sporadic Alzheimer’s disease (SAD) (Table 2). FAD is found to be originated from 

mutations in at least one of the three genes recognized as amyloid precursor protein (APP) and 

presenilin-1 and -2(ps-1 and ps-2) (PRICE et al., 1998). The FAD involves the over-expression of 

beta-secretase (BACE1) protein that results in the excessive release of amyloid-beta peptide 

(A�) (XIONG et al., 2007; TAMAGNO et al.,2005; GAO et al., 2013 ). The augmented production of 

A� elevates the levels of reactive oxygen species (ROS) (BELKACEMI and RAMASSAMY,2012; 

SANTOS et al.,2010), which induce the development of SAD involving tau accumulation (TAGA 

et al.,2011; BONDA et al.,2011; KOPEIKINA et al.,2011) and the enhanced A� formation under the 

effect of high levels of ROS (LEUNER et al.,2012). These cascade changes may initiate further 

MD, resulting in even higher levels of ROS (LAFERLA et al., 2007; SUN et al., 2013). These 

cyclic changes promote the neurodegeneration. 

 

 

Figure 1. Structure of mitochondria and electron transport of chain [1] 
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Table 1. Features of two abnormal structures, senile plaques and neurofibrillary tangles, present in the 

brain of AD patients [6] 

No. Features Senile plaques Neurofibrillary tangles 

1 Name of main constituent Amyloid-beta peptide (A�) Tau-protein 

2 Shape of main constituent Thread-like aggregates Microtubule-like structure 

3 Stage of appearance in 

brain 

At last stage of AD disease At last stage of AD disease 

4 Diagnostic approach Autopsy Autopsy 

Positron emission 

tomography imaging using 

the Pittsburg compound B 

Positron emission 

tomography imaging using 

18F-THK23 

. 

 

Table 2. Types of Alzheimer’s disease and their features [6] 

No. Types of 

Alzheimer’s 

disease 

Features 

1 

Familial 

Alzheimer’s 

disease 

(FAD) 

Mutations in at least one of the three genes recognized as amyloid 

precursor protein (APP) and presenilin-1 and -2(ps-1 and ps-2) 

Over-expression of beta-secretase (BACE1) protein 

Excessive release of A� 

High levels of ROS 

Mitochondria dysfunction 

2 

Sporadic 

Alzheimer’s 

disease 

(SAD) 

Tau accumulation 

Enhanced A� formation 

Very high levels of ROS 

Mitochondria dysfunction 

 

Dysfunctioning of mitochondria 

Deregulation of oxidative phosphorylation proteins 

Mitochondia, being energy generator of cell, is characterized with the redox potential 

gradient in mitochondria that drives the ETC through mitochondrial complexes (CI to CIV) 

(OTERA et al., 2010). After accepting electron at CIV stage, oxygen is changed into water with 

simultaneous release of energy. This energy activates ATP-synthase, which induces the 

generation of ATP by the mitochondria (Figure 1). It is observed that normal and dysfunctional 

mitochondria produce ROS in low and high concentrations, respectively (MOREIRA et al., 2010). 

These ROS deteriorate the mitochondria through oxidation of the mitochondrial macromolecules 

including proteins, lipids, and mitochondrial DNA (mtDNA) (SCHMITT et al., 2012; HAUPTMANN 

et al., 2009; XIE et al., 2013). The ROS also play a role in the production of toxic substances 

such as hydroxynonenal (HNE) which may assist the aggregation of Tau protein into 

neurofibrillary tangles (SANTA-MAR´IA et al., 2004). In dysfunctional mitochondria, there is 
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progressively diminished brain glucose metabolism, due to various deregulating molecules 

(Table 3) and reduced expression of either nuclear or mitochondrial genes responsible for the 

oxidative phosphorylation in the neocortex of AD patients (RHEIN et al.,2009; DAVID et al.,2005; 

ECKERT et al.,2010; CASPERSEN et al.,2005). This abnormality can be envisaged by positron 

emission tomography (CHANDRASEKARAN et al., 1996; CHANDRASEKARAN et al., 1997). 

                                                                               

 

Table 3. The molecules and mitochondrial targets involved in deregulation of oxidative phosphorylation 

proteins in tricarboxylic acid cycle [6] 

 

No. Target Deregulating molecules 

1 Mitochondrial complex I Tau 

2 Mitochondrial complex IV A� 

3 Mitochondrial complex V Tau 

 

 

In Alzheimer’s disease, change in activity of some enzymes such as pyruvate 

dehydrogenase and �-ketoglutarate dehydrogenase has been observed. Physiologically, these 

enzymes are involved in the tricarboxylic acid cycle. Table 4 shows the effect of mitochondrial 

dysfunction on its enzyme activity (PERRY et al., 1980; GIBSON et al., 1988; SHEU et al., 1994) 

 

 

Table 4. Effect of mitochondrial dysfunction on its enzyme activity [6] 

 

No. 
Pathological change Effect on enzymes 

Effects of reduced 

enzymatic activity 

1 

Changed level of enzymes 

involved in TCA cycle 

1. Reduced activity of 

pyruvate dehydrogenase 

2. Reduced activity of ATP-

citrate lyase 

3. Reduced activity of 

acetoacetyl-CoA thiolase 

1. Reduced production of 

acetyl coenzyme A 

2. Cholinergic defects 

2 
Loss of �-ketoglutarate-

enriched cells 

Reduced activity of �-

ketoglutarate dehydrogenase 

 
 

Imbalanced Mitochondrial Dynamics 

Healthy mitochondria normally undergo rapid and reversible fission and fusion processes in 

a programmed manner. This phenomenon, termed as mitochondrial dynamics, plays a vital role 

in the preservation of mitochondrial structure and functions such as metabolism, ROS 

production, and apoptosis regulation (ZHU et al., 2013; WAHLSTER et al., 2013). Fission is 

involved in the recycling of mitophagy-mediated destructed mitochondria. This feature is 

important for the correct assembly of mitochondrial complexes involved in ETC. Conversely, 
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fusion protects the mitochondria from autophagy-provoked demolition. This protective process 

also manages the correct distribution of mitochondrial elements including lipid bilayer 

membranes, oxidative phosphorylation complexes, and mtDNA. A very delicate balance 

between fission and fusion is needed for proper mitochondrial distribution in the cell, especially 

in neurons (DETMER and Chan, 2007; ZHAO et al., 2011; LUO et al., 2013) and is executed under 

the control of numerous mitochondrial proteins, e.g. outer mitochondrial membrane (OMM) 

proteins. Various types and activities of OMM proteins involved in mitochondrial dynamics are 

presented in Table 5. 

 

Table 5. Outer mitochondrial membrane (OMM) proteins and their activities [6] 

No. 
Fission Fusion 

Name Function Name Function 

1 

GTPase dynamin-like 

protein 1 (DLP1), or 

dynamin-related protein, 

(Drp1) imported from 

cytosol 

 GTPases-related 

Mitofusin 1 and 2 

(Mfn1 and Mfn2) 

Outer membrane 

fusion 

2 

Fis1 Regulatory 

functions 

Optic atrophy 

(Opa1) 

Inner membrane 

fusion, cristae 

formation, and 

mtDNA inheritance) 

3 

Mitochondrial Fission factor 

(Mff) 

Influx of 

DLP1 

Mitochondrial 

elongation factor 

1 (MIEF1) 

Inactivation of DLP1 

 

 

As evident from studies conducted in neurodegenerative disorder models, mitochondrial 

dynamics imbalance may results in mitochondrial dysfunction (WANG et al., 2008a). This 

alteration, along with synaptic degeneration, is considered an initial stage in AD (REDDY et al., 

2012b; ZHAO et al., 2013). In AD, fission is a dominant process over fusion in the presence of 

damaged mitochondria in neurons (BONDA et al., 2010b; OETTINGHAUS et al., 2012) or 

fibroblasts (ZHU et al., 2013, WANG et al., 2013). These cells also exhibit altered mitochondria 

distribution, particularly accumulated into perinuclear region (WANG et al., 2009). Twisted, long 

mitochondria are seen in fibroblasts from sporadic AD patients, this alteration is attributable to 

differences in the expression prototype of proteins engaged in dynamics, revealing diminished 

DLP1 (ZHU et al., 2013; WANG et al., 2008a). In AD brain, overall size of mitochondria is 

increased due to its fragmentation and thickening in damaged neurons, which suggests 

mitochondrial dynamics alterations (WANG et al., 2008b), as confirmed from ADDLs (A�-

derived diffusible ligands)-treated primary hippocampal neurons (WANG et al., 2009). These cells 

also exhibit the diminished levels of OPA1, Mfn1, and Mfn2 as well as elevated levels of Fis1 in 

AD. About the alteration in DLP1 level in neurons and fibroblasts, researchers have narrated 

mixed opinions (WANG et al., 2008b; BOSSY et al., 2010: MANCZAK et al., 2011). Its import from 

cytosol to mitochondrial membrane to intervene fission events is dependent on posttranslational 

modifications (ZHU et al.,2013), this explanation may account for higher levels of DLP1 in 
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mitochondrial fraction (WANG et al.,2009) in addition to elevated levels of Ser616 

phosphorylation and S-nitrosylation in AD brains (CHO et al.,2009). Moreover, an increase in 

abnormal interaction of DLP1 with A� monomers and oligomers with the advancement of AD 

might be a likely reason of abnormal mitochondrial dynamics and synaptic failure (MANCZAK et 

al., 2011). 

The mitochondrial fission and fusion processes can be coupled with its transport. This 

phenomenon is evident from a study that elaborates the interaction of Mfn2 with two adaptor 

proteins, Miro and Milton (MISKO et al., 2010; ZHANG et al., 2013). This outcome reveals that 

mitochondrial mobility is also altered in AD; it causes the mitochondrial reduction in neuritis 

(ZHU et al., 2013). Another study exhibits the impairment in mitochondrial mobility by A� 

(VEGA et al., 2013) and ADDL (VEGA et al., 2013) , respectively. In short, mtDNA damage, 

elevated oxidative stress, abnormal cristae, and synaptic failure are possible consequences of 

altered mitochondrial dynamics (ZHU et al., 2013; CHEN et al., 2013). 

 

Role of Amyloid Beta, Presenilin, and Tau in Mitochondrial Damage and Alzheimer’s disease 

In FAD, the built up of APP and A� in the protein import channels (translocase of the outer 

mitochondrial membrane 40, TOM40, and translocase of the inner mitochondrial membrane 23, 

TIM23) of mitochondrial membranes of human AD brains causes the structural and functional 

damage by producing elevated levels of ROS and oxidative stress (SCHMITT et al., 2012; 

BELKACEMI and RAMASSAMY, 2012; BUTTERFIELD, 2002; PAGANI and ECKERT, 2011; DEVI et 

al.,2006). It is associated with diminished cytochrome � oxidase activity, possibly due to 

decreased entrance of cytochrome � oxidase subunits IV and Vb proteins into mitochondria 

(BELKACEMI and RAMASSAMY, 2012). In addition, the inactivation of presequence protease 

(PreP) by A�-induced oxidative stress also results in the aggregation of A� in mitochondrial 

matrix leading to elevated levels of ROS (ALIKHANI et al., 2009). Moreover, A� interact with 

phosphorylated Tau in VDAC1 (voltage-dependent anion channel 1) in AD brains of human and 

mice leading to blockage of mitochondrial pores, and eventually failure of mitochondria 

(MANCZAK and REDDY, 2012; XING et al., 2013). Another study states that cyclophilin D is an 

important constituent of the mitochondrial permeability transition pore (mPTP). On interaction 

with mitochondrial A�, the opening of the mPTP occurs. Simultaneously, cyclophilin D initiates 

the generation of free radicals, promote the synaptic failure and induces the apoptosis (DU et al., 

2008; XING et al., 2012). Moreover, cytoskeletal abnormalities may also appear due to the 

accumulation of A� (KANG et al., 2011). On interaction with A� oligomers, integrins inhibit the 

cofilin-mediated actin dynamics that is linked with enhanced ROS generation and diminished 

mitochondrial potential. In response to oxidative stress, the translocation of cofilin to the 

mitochondria occurs leading to induction of swelling as well release of cytochrome �. Finally, 

the opening of mPTP occurs followed by the induction of apoptosis. 

In AD brains of human and transgenic mice, the upregulation of mitochondrial protein 

ABAD (A�-binding alcohol dehydrogenase) is observed (LUSTBADER et al., 2004). The 

interaction between A� and ABAD results in the formation of a complex, which averts the 

binding of NAD+ (nicotinamide adenine dinucleotide) to ABAD. Because of this situation, 

alteration of mitochondrial membrane permeability as well reduction in the respiratory enzymes 

activities occurs causing increased levels of ROS. In addition, DLP1 is nitrosylated by A� 

leading to nitrosative stresss that produces mitochondrial fission in neurons (CHO et al., 2009). 
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High molecular weight, ps-�-secretase complex is obtained because of association between 

presenilins 1/2 (ps-1/ps-2) and nicastrin/APH-1/PEN-2 (ANKARCRONA and HULTENBY, 2002; 

HANSSON et al., 2004) in mitochondria associated endoplasmic reticulum membranes (MAM) 

which are engaged in mitochondrial activity and dynamics (AREA-GOMEZ et al., 2012). This 

complex is capable of modifying mitochondrial membrane potential (BEHBAHANI et al., 2006). 

Because of mutations in presenilins, impaired mitochondrial function, elevated levels of 

mitochondrial ROS, oxidative damage, and mitochondrial apoptosis have been observed. In 

addition, intra-membrane cleavage of APP produces A�. 

Tau-mediated axonal translocation of mitochondria is crucial for synaptic activity (TRINCZEK et 

al., 1999), which is adversely affected by hyperphosphorylation of Tau resulting in 

neurodegeneration due to energy deficiency and oxidative stress at the synapses (STAMER et al., 

2002; IIJIMA-ANDO et al., 2012). The study of brain proteins obtained from P301L mutant human 

tau transgenic mice exhibited the deregulation of mitochondrial respiratory chain complexes 

such as reduced complex I activity, a damaged mitochondrial respiratory energistics 

accompanied by decreased ATP levels, ROS accumulation, and increased susceptibility to 

oxidative stress (DAVID et al.,2005; SCHULZ et al.,2012). Moreover, annonacin-mediated 

inhibition of complex I resulting in apoptosis is also reported (ESCOBAR-KHOHDIKER et al.,2007) 

When hyperpho-sphorylated Tau interact with mitocho-ndrial fission protein (DLP-1), an 

alteration in mitochondrial dynamics is observed accompanied by mitochondrial dysfunction and 

apoptosis (MANCZAK et al.,2011; DUBOFF et al.,2012). As far as morphology is concerned, 

tangled, filamentous mitochondria are observed from studies conducted on Drosophila (R406W) 

and mouse neurons (P301L). 

 

Therapeutic strategies for AD 

 

Usage of Mitochondria-Targeted Antioxidants 

Considering mitochondrial dysfunction and oxidative stress as some etiologies of AD, many 

antioxidant therapies, including vitamin E, huperzine A, curcumin, Gingo biloba, and melatonin, 

have been tested (CONTE et al., 2004; YANG et al., 2005; STACKMAN et al., 2003; MATSUBARA et 

al.,2003)for their efficiency to improve mitochondrial function and cognitive behavior by 

decreasing A� levels in animal models of AD. In clinical trials, non-significant effect of these 

antioxidants in cognitive function is observed, which is attributable to very severe disease state 

or ineffective supply of blood through blood-brain barrier (MISKO et al., 2010). In this regard, 

mitochondria-targeted antioxidants including choline esters of glutathione, N-acetyl-l-cysteine 

(SHEU et al., 2006), triphenylphosphonium-based molecules (MitoQ, MitoVitE, Mito-�-lipoic 

acid, and MitoPBN) (MURPHY and SMITH, 2007), and peptide-based antioxidants (Szeto-Schiller 

or SS peptides including SS31, SS02, SS19, and SS20) (SZETO, 2006) have also been 

investigated (Table 6). Accordingly, triphenylphosphonium-based molecules are the resultant 

products when hydrophobic triphenylphosphonium cation reacts with ubiquinol, �-tocopherol, 

�-lipoic acid, and �-phenyl N-tert-butylnitrone, respectively. Due to cationic nature, tremendous 

built up of this group of antioxidants in mitochondria promisingly protects the mitochondria 

against oxidative stress (MURPHY and SMITH, 2007). 
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Table 6. Various classes of mitochondria-targeted antioxidants and their examples 

No. Classes Examples 

1 
Triphenylphosphonium-based 

molecules 

MitoQ, MitoVitE, Mito-�-lipoic acid, MitoPBN, 

and SKQ1 

2 Peptide-based antioxidants SS31, SS02, SS19, and SS20 

 

MitoQ and SS31 have been tested for in vitro antioxidant study and found effective for 

prevention of hazardous effects (as explained above) of A� in mouse cell models of AD 

(neuroblastoma cells, N2a cells, and A� precursor protein transgenic mouse cells, Tg2576 cell 

line) (CALKINS et al.,2011; MANCZAK et al.,2010). The mode of antioxidant activity of MitoQ 

and SS31 is related to its potential to decrease in cyclophilin D expression, while alone SS31 

mitigate the oligomeric A� effects by restoring mitochondrial mobility and alone MitoQ averts 

the cognitive failure in 3xTg-AD mice by scavenging the free radicals (MCMANUS et al., 2011). 

One more example of mitochondria-targeted antioxidants is SKQ1 

(plastoquinonyldecyltriphenylphosphonium) that is a membrane-penetrating cationic specie 

having capability of accumulation in the inner mitochondrial membrane (SKULACHEV, 2012). 

Because of ROS scavenging activity, SKQ1 has a potential feature of anti-aging in rats 

(STEFANOVA et al., 2010). 

Due to the tyrosine or dimethyltyrosine (Dmt) moiety, SS peptides are potential scavengers 

of H2O2 and ONOO– as well inhibitor of lipid peroxidation (SZETO, 2006). The ROS scavenging 

activity of Dmt is demonstrated to be higher than that of tyrosine. 

An in vivo study compared the APP mice with APP transgenic mice loaded with human 

mitochondria-targeted catalase (MCAT) gene and found that life of later mice was 5 months 

more than the former mice (MAO et al.,2012). The increase in life-span of transgenic mouse 

could be due to the reduction in the levels of BACE1 and A� levels (40 and 42). 

All these results elaborate that mitochondria-targeted antioxidants may be a successful remedy 

for the treatment of patients suffering from AD. 

 

Autophagy of Damaged Mitochondria 

Physiologically, the recycling process in which lysosomes degrade the macromolecules and 

cellular organelles is called autophagy, whereas the autophagy of mitochondria, termed as 

mitophagy, involves the engulfment of dysfunctional mitochondria into autophagosomes 

followed by their lysosomal degradation. In AD, alteration in mitochondrial dynamics is 

responsible for the generation of segregated, damaged mitochondria that are, later on, destroyed 

through mitochondrial autophagy (MOREIRA et al., 2007b). However, it is still under-discussion 

whether mitophagy is protective process or pathologic. 

The proposed mode of mitochondrial autophagy starts with mitochondrial damage followed by a 

series of activities, i.e. E3 ubiquitin ligase Parkin-induced kinase 1 stimulates Parkin-mediated 

ubiquitination to recruit autophagy adapter proteins (p62). The interaction of p62 with LC3 

provokes the autophagosomal engulfment. Accordingly, there are evidences that many 

mitochondrial proteins (e.g. VDAC1 and mitofusins) may inhibit mitochondrial fusion events 

resulting in the segregation of damaged mitochondria (GEGG et al., 2010; Burns et al., 2009). 

Moreover, all factors affecting mitochondrial dynamics in AD (as discussed above) may initiate 

mitochondrial damage and ROS buildup. 
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There is a strong association between autophagy and the aggregation of AD-related protein 

such as A� and Tau (NIXON et al., 2005) in neuronal cells. In neurons of AD patients, an 

increased number of mitochondria-containing autophagic vesicles has been reported that 

suggests a mitophagy alteration (MOREIRA et al., 2007c). Another study elaborates that the cortex 

of AD brains contains a reduced level of Parkin, which is a protein target of mitophagy 

(MOREIRA et al., 2007c). Beclin 1 is another protein target of mitophagy. In the diseased part of 

AD brain of an APP transgenic mouse model, reduced level of Beclin 1 is found at early stage of 

disease (PICKFORD et al., 2008; KHANDELWAL et al., 2011). Due to which an increase in the 

intra- and extra-cellular level of A� occurs resulting in neurodegeneration, it highlights the 

relationship bebtween autophagy and AD-associated pathology. In addition, the relationship 

between FAD and autophagy has also been reported in a study, which shows that autophagy is 

damaged by Alzheimer-related ps-1 mutations since autophagy requires functional Ps-1 for 

lysosomal activity (LEE et al., 2010). Therefore, mitophagy can be impaired through ps-1 

mutations, and thus ultimately influences mitochondrial activity. Alternatively, the pathogenic 

role of autophagy in AD development has been proposed. The authors reported that autophagic 

vesicles are involved in the production and abnormal storage of A� in damaged neuronal cells of 

the AD brain (YU et al., 2004). 

Moreover, numerous other molecules, such as rapamycin (CACCAMO et al., 2010; SPILMAN 

et al., 2010), cystatin B (YANG et al., 2011), trehalose (SCHAEFFER et al., 2012), scyllo-Inositol 

(LAI and MCLAURIN, 2012), and latrepirdine (STEELE and GANDY, 2013), have also been 

investigated to explore their potential to induce autophagy as a therapeutic approach in the AD 

animal models. 

Alzheimer’s disease modeling 

In comparison to image analysis, living cells should preferably be employed for the correct 

study of mitochondrial functions since mitochondria are extremely dynamic organelles that 

perform numerous cellular functions. Thus, novel models for studying AD include animal 

models, patient-derived non-neuronal cells, and postmortem investigation of the patient’s brain. 

In this context, fibroblasts, the differentiated cells derived from adult patients, can be used to 

produce stem cells through retro-differentiation (TAKAHASHI and YAMANAKA, 2006; TAKAHASHI 

et al., 2007; YU et al., 2007); however, such results are needed to be adjusted/extrapolated to 

generate neuron-associated data, since fibroblasts and neurons are different from each other in 

many respects such as energy requirements, morphology, and gene/protein expression pattern 

(CHIN et al., 2009; POLOULIAKH, 2013). Currently, FAD animal models are generally available to 

study mitochondrial functions; however, SAD models should also be explored accordingly. 

Moreover, there are evidences that cell encoding can be reversed, since the induced 

pluripotent stem cells (iPS) have been generated by four transcriptions factors, Oct3/4, Sox2, c-

Myc, and Klf4 (TAKAHASHI and YAMANAKA,2006), which can be substituted by small molecules 

(HUANGFU et al.,2008; ICHIDA et al.,2009; LI et al.,2011) or microRNAs (JUDSON et al.,2009; 

LIN et al.,2011; ANOKYE-DANSO et al.,2011) for transcription factors. For studying AD, these 

iPS have been employed to generate neurons such as the usage of presenilin-associated FAD 

patient’s fibroblasts and APP duplication associated AD fibroblasts for increased production of 

A�42 and A�40, respectively (YAGI et al.,2011; ISRAEL et al.,2012). In more advance studies, 

functional neurons (induced neurons, iN) have been directly obtained from fibroblast e.g. neural 

progenitor cells (KIM et al., 2011) or tripotent neural precursor cells (iNSC) (LUJAN et al., 2012) 
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have been derived from fibroblast. These conversions have been mediated by three transcription 

factors, Ascl1, Brn2 (also called Pou3f2), and Myt1l (THEIR et al., 2012; VIERBUCHEN et al., 

2010) or one microRNA and two transcription factors (PANG et al., 2011; YOO et al., 2011). A 

recent study has reported the obtention of reprogrammed/functional neurons from human 

fibroblasts suffering from AD (AMBASUDHAN et al., 2011). 

From above discussion, it is clear that the survival and differentiation of neurons is 

dependent on mitochondrial function. There, it is very crucial that the integrity of mtDNA should 

be maintained during differentiation of neuronal stem cells, since oxidative stress and protein 

levels (such as DLP1 and prohibitin) in mitochondria (QIANG et al.,2011) may damage mtDNA 

integrity and thus reprogramming from fibroblasts to neurons (ZHOU et al.,2012; WANG et 

al.,2010). 

CONCLUSION 

For studying neurodegenerative disorders such as Alzheimer’s disease, various models 

including iPS, iN, or iNSC have increasingly been used, however these models, especially 

human cellular models, should also be employed to study mitochondrial functions. In order to 

execute such type of approach, future research can be focused on high through-put protocols 

such as fastening the neuron generation rate. 
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Izvod 

 

 

Alchajmerova bolet (AD) je u velikom stepenu prouzrovana disfunkcijama mitohondrijama  

alternativno izazvanim ekcesivno reaktivnim vrstama kiseonika i inbalansa dinamike 

mitohondrija. U patogenezi AD važna je uloga mnogih faktora koji uključuju amiloid-beta 

peptide (A�). Tau – protein i mutacije u presenilinu-1. Dodatno, mitohondrije – ciljani 

antioksidanti su objašnjeni zbog njihovog značaja za izmenu mitohondrija u AD. Uz to, promena 

u dinamici mitohondrija je odgovorna za izazivanje segregacije oštećenih mitohondrija koje se 

kasnije uništavaju mitohondrijalnim autofagama kod AD. Diskutovani su različiti novi modeli 

korišćeni u ispitivanjima Alchajmerove bolesti.  
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