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Although accompanied with adverse low temperatures, early maize sowing could be 

used to avoid drought during flowering and diminish yield losses. Herein, a small-scale 

experiment of low temperature stress (LTS) on maize lines L1 (tolerant), L2 (medium 

tolerant) and L3 (susceptible) is presented. Plants were grown in pots exposed to 

exterior suboptimal (March) and optimal (late April) temperatures until three leaf stage. 

Chlorophyll (CH), flavonoids (FL), anthocyanins (AN) and nitrogen balance (NBI) 

indices were measured using Dualex Scientific optical device. Growth parameters were 

also determined. Under LTS, number of plants was unchanged for L1 and halved for L2 

and L3. Compared to L2 and L3, L1 had significantly higher (p<0.05) shoot fresh 

weight (0.649 g vs. 0.406 g and 0.303 g), AN (0.17 vs. 0.13) and FL (1.47 vs. 1.38 and 

1.36). For recovery evaluation, plants were transplanted into the field. Transplanted 

stressed L1 plants showed the highest grain yield per plant (55g) in the field. Due to 

high correlations (p<0.01) between FL in three leaf stage and grain yield per plant, FL 

could be used as an indicator of plant recovery of maize genotypes exposed to LTS 

during early sowing. 
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INTRODUCTION 

Climatic changes can cause severe summer droughts in temperate regions worldwide, 

often leading to serious maize yield losses. One way of surpassing this problem is earlier sowing 

to avoid negative effects of drought during the flowering period (KUCHARIK, 2006). However, 

temperatures in March and early April are very low for seed germination and early stages of 

plant development, contrary to the optimal conditions in the second half of April and the 

beginning of May. Reduction in growth and biomass production capacity can be found under 

suboptimal temperatures (10–15°C), while irreparable damage and loss of plants can occur under 
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low temperatures (2–8°C) (reviewed in: LEIPNER and STAMP 2009). Moreover, cold intolerance 

of parental components can affect plants emergence, leading to flowering incompatibility or poor 

stand, thus causing reduction in maize hybrid seed production. 

Maize is generally sensitive to low temperatures, but there is a considerable variation 

within its germplasm regarding cold sensitivity. Physiological research related to the 

mechanisms underlying maize cold sensitivity concerned mostly the photosynthetic apparatus 

(FOYER et al., 2002; JOŃCZYK et al., 2017), root functioning (HUND et al., 2004), water relations 

(JOŃCZYK et al., 2017), and transport processes (SOBKOWIAK et al., 2014). Several QTL and gene 

expression experiments were performed with the aim to provide a set of candidate genes for use 

in breeding for tolerant maize genotypes. It was shown that dozens of genes are involved in 

stress response through cell processes including photosynthesis, metabolism, regulation of gene 

expression and cell wall organization (SOBKOWIAK et al., 2014; MAO et al., 2017). 

Herein, a small-scale experiment on three elite lines differing in low temperature 

tolerance is presented. The aim of the experiment was to 1) identify morphological and 

physiological traits at early seedlings stage involved in low temperature stress response, and 2) 

evaluate recovery of the stressed lines through grain yield achieved under field conditions. 

 

MATERIALS AND METHODS 

Plant material and experimental design 

Elite maize lines, L1 (tolerant), L2 (medium tolerant) and L3 (susceptible) were tested for 

low temperature tolerance. L1 belongs to BSSS, while L2 and L3 belong to Lancaster heterotic 

groups. Considering maturity groups, L1 is FAO 650, L2 is FAO 550 and L3 is FAO 500. 

Moreover, L1 is flint, L2 dent and L3 semi-dent kernel type. The level of tolerance was noted 

according to the breeders׳ field experience. Plants were grown in jiffy pots until three leaf stage, 

on a mixture of quartz sand (particle size 0.17–0.32 mm) and field soil (ratio 1:3). In order to 

comply with the environmental conditions, two experimental sets were laid out in a randomized 

complete block design (RCBD) with three replications and 40 seeds in jiffy pots each, placed 

outside and sheltered from the rain and watered after planting. Afterwards, plants were watered 

as needed. 

The low temperature stress (LTS) experiment lasted from the 6th of March till the 11 th of 

April. First ten days, daily temperatures were below 10°C (average of 7.6°C) and air humidity 

was 43.2%. From mid-March to the 11th of April, daily temperatures were between 10°C and 

15°C (average of 13.3°C), with seven days between 16.8°C and 19.8°C and four days between 

7.7°C and 9.8°C. The average air humidity was 29.2%. Plants started to emerge on the 27th of 

March. The third leaf of all three lines was fully developed on the 11th of April. 

The optimal condition (OC) experiment lasted from the 26th of April till the 15th of May. 

The average temperature was 16.9°C and air humidity 34.8%. Temperatures were between 9.7°C 

and 14.9°C six days, and 14 days between 15.6°C and 20.8°C. Plants started to emerge on the 4 th 

of May and the third leaf of all three lines was fully developed on the 15th of May. 

 

Morphological and physiological traits measured 

Number of plants (NP), leaf area per plant (LA) and physiological traits were measured 

on randomly chosen 10 plants per replication, the 1st, 4th and 7th day since more than half plants 
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were at the third leaf stage until they had fully developed third leaf. Number of leaves, length 

and maximum width of each leaf were used for calculating leaf area per plant (cm2) using the 

formula: Σ (length x maximum width x 0.75)/number of plants. Chlorophyll (CH), flavonoid 

(FL) and anthocyanin (AN) indices were determined using Dualex Scientific (Force-A, Orsay, 

France) optical leaf sensor. Nitrogen balance index (NBI), calculated as the ratio between 

chlorophyll and flavonoid content, was also recorded. 

At three leaf stage, root and shoot characteristics were recorded on 15 plants per line (five 

per replication). After measuring root and shoot lengths (RL and SL), and their fresh weights 

(RFW and SFW), plant samples were oven-dried at 105°C for 24 h for root and shoot dry weight 

(RDW and SDW) measurement. Data on lengths were expressed in cm and on weights in g. 

 

Plant recovery estimation 

For plant recovery estimation, 30 plants per line (10 per replication) previously sown in 

jiffy pots under LTS and OC, were transplanted into the field on the 13th of April and 17th of 

May, respectively. Sowing/transplanting was done in three replications according to RCBD. As a 

control, lines were sown in the field on the 25th of April (regular sowing). Plants were harvested 

manually and dried to 14% of grain water content. Yield was expressed as average grain yield 

per plant (YP in g plant-1). 

 

Statistical analysis 

For both OC and LTS, two-way analysis of variance (ANOVA) for RCBD was done for 

all traits using MSTAT-C software and Fisher’s LSD at 0.05 probability level was performed. 

Student’s t-test was done for morphological and physiological traits between OC and LTS, as 

well as between measurements for physiological traits. Pearson correlations were determined 

between seedlings morphological and physiological traits with YP, separately for OC and LTS. 

 

RESULTS AND DISCUSSION 

Maize seedlings are very sensitive to cold stress during germination, emergence and 

transition phase from heterotrophic to autotrophic growth (HUANG et al., 2013). In the 

experiment presented herein, plants started to emerge 12 days after the temperature rose above 

10°C. Number of plants was significantly different (p<0.01) under OC and LTS for L2 (120 vs 

68) and L3 (112 vs 72), opposite to L1 (112 plants in both OC and LTS). Germination at low 

temperatures requires phospholipid remodelling to prevent loss of membrane integrity and cold 

tolerant seeds accumulate polyunsaturated chains associated with lower electrolyte leakage 

(NOBLET et al., 2017). The unaltered NP of L1 indicated its tolerance to LTS during 

germination, possibly due to accumulation of polyunsaturated fatty acids. Also, previously in 

field noted different response to cold stress of L2 and L3 inbred lines most probably does not 

refer to exposure to low temperatures during germination, but during later phases of 

development. 

ANOVA showed that genotype and replication had no impact on root and shoot traits 

under LTS, while genotype had significant impact on RFW (p<0.05), SL (p<0.001) and SDW 

(p<0.05) under OC (data not shown). Under OC, LA, RFW, SL and SDW were significantly 

different (p<0.05) between the genotypes (Table 1). However, significant difference between the 
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lines was found only for SFW between L1 and L3 (p<0.05) under the stress, indicating the 

ability of the tolerant line to absorb more water and nutrients under LTC. Several QTLs for SFW 

at early growth stages under contrasting temperature conditions in the field were identified in 

PRESTERL et al. (2007). Student’s t-test revealed significant changes in all morphological traits 

but RFW, being more pronounced in stressed shoots (data not shown).  

 

Table 1. Results of Fisher’s LSD test for morphological and physiological traits under optimal and stress 

conditions 

Trait Optimal conditions Low-temperature stress 

L1 L2 L3 LSD L1 L2 L3 LSD 

Morphological traits 

LA 14.95a1 13.19b 10.23c 1.57 9.73 a 10.37a 9.00a 1.95 

RL 23.59a 21.05a 20.32a 7.18 21.05a 20.09a 18.18a 6.29 

RFW 0.507b 0.701a 0.503b 0.176 0.758a 0.676a 0.636a 0.617 

RDW 0.030a 0.044a 0.035a 0.023 0.054a 0.057a 0.043a 0.023 

SL 15.49a 12.69b 11.02c 0.91 8.48a 7.58a 7.27a 2.64 

SFW 1.741a 0.789a 0.585a 0.424 0.649a 0.406ab 0.303b 0.336 

SDW 0.102a 0.085a 0.062b 0.023 0.065a 0.068a 0.043a 0.072 

Physiological traits 

FL 1.29a 1.15b 1.28a 0.06 1.47a 1.38b 1.36b 0.07 

AN 0.14a 0.12b 0.12b 0.009 0.17a 0.13b 0.13b 0.007 

CH 23.90b 26.52a 24.16b 0.84 23.19b 27.86a 26.94a 2.073 

NBI 19.27b 23.62a 19.21b 1.23 16.08b 20.66a 20.4 a 2.33 

LA – leaf area per plant (cm2); RL – root length (cm); RFW – root fresh weight (g); RDW – root dry weight (g); SL – 

shoot length (cm); SFW – shoot fresh weight (g); SDW – shoot dry weight (g); FL – flavonoids; AN – anthocyanins; CH 

– chlorophyll; NBI – nitrogen balance index. 
1 – values with different letters in a row for different conditions are significantly different at p<0.05. 

 

 
The level of changes of morphological traits under LTS is illustrated in Fig. 1a. 

Analysis of variance for physiological traits revealed significant impact of genotype and 

measurement on all traits under both OC and LTC (p<0.001), except of measurement 

insignificance on CH under LTS (data not shown). Tolerant L1 had significantly higher content 

of pigments and lower CH and NBI (p<0.05) compared to L2 and L3 under LTC (Table 1). 

Student’s t-test for these traits showed significant changes under LTS (data not shown), with the 

highest number of them found in the third measurement (fully developed third leaf) for all traits 

in L1, FL and NBI in L2 and NBI in L3 (Table 2). Thus, the number of significant changes 
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increased with the time of exposure to the stress, primarily in the most tolerant L1 line. Similar 

results were found for chlorophyll fluorescence parameters in maize under cold conditions 

(RIVA-ROVEDA et al., 2016). The level of physiological changes under LTC is illustrated in  

 

 

 
1a 

 

 
 
1b 

 
Figure 1. Percentage of changes of morphological (1a) and physiological traits in the third measurement 

(1b) under low-temperature stress compared to the optimal conditions in L1, L2 and L3. OC – 

values measured under optimal conditions given as 1 (100%). FL – flavonoids; AN – anthocyanins; 

CH – chlorophyll; NBI – nitrogen balance index. RL – root length (cm); RFW – root fresh weight 

(g); RDW – root dry weight (g); SL – shoot length (cm); SFW – shoot fresh weight (g); SDW – 

shoot dry weight (g) 
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Table 2. Significances of Student’s t-test of physiological traits for measurements between optimal and low-

temperature conditions  

Genotype L1 L2 L3 

Measurement I II III I II III I II III 

FL ns ns * ns ns * ns ns ns 

AN ns * ** ns ns ns ns ns ns 

CH ns ns * ns ns ns ns ns ns 

NBI ** ns *** ns ns ** ns ns * 

FL – flavonoids; AN – anthocyanins; CH – chlorophyll; NBI – nitrogen balance index. *,**,*** – significant at p˂ 0.05, 

0.01 and 0.001, respectively; ns – non-significant. 

 
In plants, LTS strongly increases flavonoids (KORN et al., 2008; BECKER et al., 2014) and 

differences found in FL between L1, L2 and L3 support its role in response to LTC. Since 

seedling leaf tissues are developmentally unable to synthesize structurally protective compounds 

in their cell walls, they often increase vacuolar solutes, like anthocyanin, to remain turgid under 

low water potential conditions (GOULD, 2004). Higher synthesis and vacuolar sequestration of 

anthocyanins as a considerable metabolic investment for plant cells, implies a more preserved 

overall status of cold tolerant L1 compared to L2 and L3 inbreds. This is opposite to RODRIGUEZ 

et al. (2014), where a susceptible line accumulated two times more anthocyanins under cold 

conditions. However, none of the QTLs referring to anthocyanins were identified in their work. 

Chlorophyll content reflects plant photosynthesis efficiency and under suboptimal 

temperatures the photosynthetic capacity is low (ZAIDI et al., 2010). In the third measurement, 

decrease in CH under LTS was found in all three lines, but it was significant only in tolerant L1 

(Table 2), the genotype with the highest anthocyanins accumulation. Similar results were 

reported in studies on a variety of plant species that significant decrease of photosynthetic 

pigments coincided simultaneously with an increase of anthocyanin biosynthesis, which is 

determined by inherited factors and enhanced by low temperature conditions (PIETRINI et al., 

2002). Significant change in the third measurement in all lines was shown only by NBI. As leaf 

flavonoids can be considered as an indicator of N availability, NBI could relate to N status of the 

plant (CARTELAT et al., 2005). The influence of the stress on NBI was significant, indicating 

temperature effect on crop N status of maize seedlings. 

After the pot experiment, plants were transplanted to the field to evaluate their recovery 

through YP. ANOVA showed that genotype (p<0.05), sowing/transplanting dates (p<0.001) and 

genotype x sowing/transplanting dates (p<0.05) had significant impact on YP (data not shown). 

The highest YP was achieved in regular sowing (Table 3). 

The tolerant L1 had the highest YP after the stress treatment (B). However, YP was 

significantly reduced in L1 and L3 in plants transplanted after the OC (C), indicating their 

susceptibility to drought, which occurred during flowering and early grain filling in 2017 

(http://www.hidmet.gov.rs/podaci/meteorologija/latin/l2017.pdf). Significant correlations were 

found between YP and physiological traits (Table 4), opposite to insignificant correlations 

between YP and morphological traits (data not presented). 
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Table 3. LSD for mean values of the lines, treatments (sowing/transplanting dates) and line x treatment 

interaction of morphological parameters and grain yield calculated from the two-way ANOVA 

 YP (g plant-1) 

Genotype (G)  

L1 55.74a 

L2 56.17a 

L3 41.10b 

LSD0.05 10.46 

  

Sowing/Transplanting date (STD)  

regular sowing (A) 65.40a 

transplanting after LTS (B) 47.68b 

transplanting after OC (C) 39.93b 

LSD0.05 10.46 

  

G x STD  

L1xA 83.20a 

L1xB 55.03bc 

L1xC 29.00d 

  

L2xA 60.40bc 

L2xB 44.60cd 

L2xC 63.50b 

  

L3xA 52.60bc 

L3xB 43.40cd 

L3xC 27.30d 

LSD0.05 18.17 

Values with different letters in a column for each section are significantly different at p<0.05. 
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Table 4. Pearson's correlations for YP and physiological parameters for three measurements (I, II and III) 

under optimal and low-temperature stress conditions 

 Optimal conditions Low-temperature stress 

 YP:FL YP:AN YP:CH YP:NBI YP:FL YP:AN YP:CH YP:NBI 

I -0.843** -0.208 0.563 0.820** 0.735* 0.560 -0.537 -0.783* 

II -0.882** -0.301 0.605 0.868** 0.801** 0.310 -0.060 -0.335 

III -0.643 -0.105 0.250 0.857** 0.759** 0.445 -0.302 -0.481 

YP – yield per plant (g); FL – flavonoids; AN – anthocyanins; CH – chlorophyll; NBI – nitrogen balance index. *,** – 

significant at p˂ 0.05 and 0.01, respectively. 

 

Although drought effect hindered the precise estimation of recovery, significant and 

positive correlations between FL in early phases of development under the stress and YP were 

found in all three measurements, indicating that FL observed at three leaf stage could be used for 

predicting recovery of a maize genotype exposed to low temperatures during germination, 

emergence, heterotrophic growth phase and/or transition to autotrophic growth phase. 

 

CONCLUSIONS 

Unchanged number of plants under both optimal and cold conditions observed in tolerant inbred, 

could suggest high relevance of this indicator for cold tolerance stress. Among the 

morphological traits evaluated under cold stress, shoot fresh weight contributed the most to 

separation of cold tolerant line from medium and susceptible ones. Due to observed high 

correlation with grain yield per plant, flavonoid index measured at three leaf developmental 

stage could be used as a potent indicator of plant recovery for maize inbreds exposed to low 

temperature stress during early sowing. 
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Izvod 

Ranom setvom kukuruza se može izbeći efekat suše u fazi cvetanja i tako preduprediti smanjenje 

prinosa uprkos nepovoljnim temperaturama u tom periodu. U ovom istraživanju prezentovani su 

rezultati efekta niskih temperatura na tri linije kukuruza: L1 (tolerantna), L2 (srednje osetljiva) i 

L3 (osetljiva). Biljke su gajene do faze trećeg lista u saksijama izloženim suboptimalnim (mart) i 

optimalnim (april) spoljnim temperaturama. Sadržaj hlorofila, flavonoida i antocijana kao i 

nitrogen balance index (NBI) su mereni korišćenjem uređaja Dualex Scientific (Force-A, Orsay, 

France). Takođe, mereni su i parametri rasta. U poređenju sa L2 i L3, L1 je imao značajno veću 

(p<0.05) svežu masu nadzemnog dela biljke (0.649 g vs. 0.406 g i 0.303 g), antocijana (0.17 vs. 

0.13) i flavonoida (1.47 vs. 1.38 i 1.36). Biljke su presađene u polje radi procene oporavka. 

Presađene biljke genotipa L1 su pokazale najveći prinos po biljci u polju (55g). S obzirom na 

visoku korelaciju između sadržaja flavonoida u fazi trećeg lista i prinosa po biljci (p<0.01), 

flavonoidi mogu biti korišćeni kao indikator oporavka biljke kukuruza izloženih niskim 

temperaturama u fazi rane setve.  
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